Tuesday, 5 March 2013

Pathophysiology of IBS

In the past, the predominant pathophysiologic mechanisms in IBS were thought to be abnormalities in the gut smooth muscle function, visceral hypersensitivity, and central nervous system (CNS) hypervigilance.

We now recognize the existence of peripheral mechanisms that initiate perturbation of gastrointestinal (GI) motor and sensory functions that lead to IBS symptoms. These irritants include the products of digestion, neurotransmitters, transporters, a history of gastroenteritis, changes in the microbiome, mucosal immune activation, and increased mucosal permeability. In addition, it is recognized that disorders of rectal evacuation mimic the symptoms of constipation-predominant irritable bowel syndrome (IBS-C).


The symptoms of evacuation disorder -- constipation, straining, a sense of incomplete evacuation, bloating, left-sided abdominal pain that are relieved by bowel movements -- are very similar to those of IBS-C. In clinical practice, we recognize spastic disorders of the pelvic floor or the anal sphincter that prevent evacuation. Women who have had multiple vaginal deliveries, forceps delivery, or injury to the perineum can have descending perineum syndrome, in which the pelvic floor does not function normally; in contrast to spastic disorders, it results in a flaccid pelvic floor.

During normal evacuation, the puborectalis muscle relaxes and the rectoanal angle opens up in order to facilitate defecation. In the spastic disorders, the anal sphincter and puborectalis contract spastically, preventing the opening of the rectoanal angle. In descending perineum syndrome, the entire perineum balloons out with straining, but the angle between the rectum and the anal canal remains acute, preventing expulsion of stool.

Prokinetic and stimulant agents will have limited or no benefit in evacuation disorders mimicking IBS-C, and can worsen pain without overcoming the problem of rectal evacuation. The diagnosis of an evacuation disorder requires history, examination, evaluation of perineal descent, anorectal manometry, and balloon expulsion test.


Among the peripheral mechanisms associated with IBS is disturbance of colonic motility, which may be accelerated or delayed, and may be secondary to an abnormality in secretion in the intestine or colon.

Several factors may be involved, including neuromuscular dysfunction, products of the enteroendocrine cells, production of organic acids within the lumen, and sometimes even genetic predisposition, as has been described in patients who have a disturbance in either bile acid synthesis or a rare mutation involving the guanylate cyclase C receptor. As a result of this abnormality of motility or transit, approximately 45% of patients with diarrhea-predominant IBS (IBS-D) have accelerated transit, and about 25% of those with IBS-C have delayed transit.

Approximately 35% of the patients with IBS-D had accelerated transit and the same proportion of patients who had IBS-C had delayed transit.

Recent research suggests that excess hepatic synthesis and excretion of bile acids may contribute to IBS-D; and that decreased production and excretion may contribute to IBS-C

We know that certain types of bile acids have at least 2 α-hydroxy groups at the 3, 7, and 12 positions are natural secretory agents; they are natural laxatives that facilitate movement of contents through the colon. There is now evidence that a deficiency in these secretory bile acids contributes to the slow transit in patients who have constipation or IBS-C. This is relevant as it may provide a rationale for new approaches to treatment of both diarrhea and constipation in IBS.

A second major peripheral mechanism pertains to the sensing of the small bowel and colon, and responses to those sensations. Activation of local secretory and motor reflexes and sensory mechanisms may result from ingestion of foods that stimulate enteroendocrine cells or the organic acids, such as short-chain fatty acids (SCFAs) that are produced by the breakdown of complex carbohydrates in the colon by the resident microflora. As mentioned earlier, it may also be related to the presence of bile acids that bypass the ileal reabsorptive mechanism and reach the colon, causing symptoms such as diarrhea, bloating, and abdominal pain.


Important cellular mechanisms present in the small intestine and colon -- goblet cells, enterocytes, and enteroendocrine cells -- work in unison to change fluid and electrolyte movement through the epithelium. For example, goblet cells produce not only mucins, but also secrete guanylin, and uroguanylin which activate the guanylate cyclase C receptor to induce chloride secretion from the enterocytes. Similarly, enteroendocrine cells produce transmitters, such as 5-hydroxytryptamine, which then stimulate either the submucosal neuron to evoke secretion, or directly stimulate the enterocytes to produce chloride secretion and thereby drag water and sodium into the lumen.

Different mechanisms may be involved in the pathophysiology of IBS, but more importantly, perhaps, is that these mechanisms provide a means to treat IBS-C. For example, drugs that activate the chloride channel directly, and drugs that bind to the guanylate cyclase C receptor to induce chloride secretion, help to manage constipation in IBS-C.

Rectal hypersensitivity had previously been thought to be associated with IBS, but it is now apparent that not all patients with IBS have evidence of hypersensitivity of the rectum or the intestines. IBS is not all about sensation, and we need to consider other mechanisms for IBS.

One of those mechanisms is a change in the barrier function in the small intestine and in the colon, which we term mucosal permeability. Increased permeability with alteration of the expression of the tight junction proteins may occur as the result of prior gastroenteritis, atopy, or food intolerance. These may occur, for example, with gluten intake or ingestion of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), the sugar entities that alter barrier function of the intestine. Stress also is known to make the mucosa leaky (more permeable) and allow antigens or other chemicals in the lumen access to the surface epithelial cells and to nerve cells below that level. Typically, changes in permeability results in IBS-D, with fluid secretion or activation of those sensory mechanisms that ultimately become expressed as pain.



It is not only the epithelial cells that constitute the barrier. Within the lumen, there is degradation of bacteria and antigens by bile, gastric acid, and pancreatic juice. There are commensal bacteria that inhibit the colonization of pathogens by producing antimicrobial substances. The microclimate provides an unstirred water layer, the glycocalyces from the epithelial cells, and the mucus layer, which, along with secretion of immunoglobulin-A (IgA) within the intestine, prevents bacterial adhesion.



Those 3 layers prevent entry of antigens, or attack by microorganisms, even before we get to the epithelial cells, which are connected by junctional complexes that have the ability to transport luminal content and react to noxious stimuli by secretion of chloride and antimicrobial peptides. This secretion can wash away those antigens so that they cannot gain ground within the lining of the intestine.

Below the epithelial cells, we have a number of other mechanisms. Within the lamina propria, we have immune cells that bring innate and acquired immunity, secretion of immunoglobulin cytokines to protect the intestine from attack. We also have other endocrine and enteric nervous systems that induce intestinal propulsion and move that attacking organism or antigen, preventing it from gaining ground within the intestinal wall.


Just as there is a mucosal barrier in the small intestine, there is also a low permeability in the normal state in the colon. The barrier in the colon may be broken, however, when malabsorption of either carbohydrates or fat results in the production of SCFAs, when there is bile acid malabsorption or immune activation, in the presence of genetic predisposition to inflammation or immune activation or bile acid synthesis. Typically, this is going to be associated with IBS-D, increased fluid secretion and activation of sensory mechanisms.





Research has documented an increased intestinal permeability in IBS; this is relevant because 1 of the agents used in the treatment of IBS, lubiprostone, has been shown in a porcine ischemia model to restore tight junction function and normalize permeability of the intestine. This may be advantageous if permeability is indeed a significant mechanism causing the patient's diarrhea.

The cumulative excretion of a sugar molecule such as mannitol has been shown to be a fairly good noninvasive marker of permeability, as has been demonstrated in patients who have IBS-D. Although the increase in permeability is lower than that which is observed in patients with inactive or microscopic or ulcerative colitis, changes in permeability and tight junction proteins appear to be quite relevant in IBS. There is a relationship among duration of disease, body mass index, and, importantly, the expression of the tight junction protein occludin and pain in IBS.



Another mechanism relevant in IBS is the activation of mucosal immune mechanisms. This activation has a secondary effect of increasing permeability as well as switching on reflexes and sensory mechanisms that result in manifestations of IBS. The factors involved in mucosal immune activation are a history of gastroenteritis, and inflammatory cells such as mast cells and T lymphocytes. Increased circulating cytokines can also result from mucosal immune activation. The T lymphocytes and mast cells appear to be activated among patients who have IBS-D, rather than IBS-C.

This leads to the question of whether IBS-D may be an inflammatory disease, and if so, what is its cause? At the present time 2 of the mechanisms thought to be causally related to this mucosal inflammation or immune activation are the bile acid malabsorption and the presence of dietary antigens, such as gluten, to which some patients may be sensitive, even in the absence of overt celiac disease.


The last mechanism to be discussed is the colonic microbiome and production of SCFAs. Even people without IBS pass about 10% of those complex carbohydrates from the ileum to the colon. Because of the interaction between the microbes in the colon and the complex carbohydrates that reach the colon, the production of SCFAs results in the stimulation of motor, secretory, and sensory mechanisms.

This is identified primarily by an increase in Firmicutes spp, or the ratio of Firmicutes spp to Bacteroidetes spp. Clearly, the microbiome in the colon can be modified by antibiotics and probably also by probiotics. Bile acids influence the microbial species in the colon. The consequences of these changes in the microbiome are abdominal bloating, pain, and diarrhea.

Studies have examined the microbiota and the feces from patients with IBS. The most straightforward summary of those findings is that, in general, the number of Firmicutes spp is increased and the number of Bacteroidetes spp is decreased. As examples, Clostridia spp and Veillonella spp are increased, whereas Bacteroides spp and Prevotella spp are decreased in patients with IBS. More work is being done in this area.

In summary, there are a number of pathophysiologic mechanisms that result in the symptoms of IBS. It is also important to recognize there is a potential role of genetics in altered sensing and stimulation of secretion and motility, permeability, immune activation, colonic transit. These include changes in serotonergic control, inflammation, bile acid synthesis, and the guanylate cyclase C receptor on the enterocytes.



At present, management is guided by the symptom criteria, such as the Rome III criteria. Commonly used treatments for IBS-C include fiber, osmotic laxatives, bisacodyl, lubiprostone, and linaclotide; loperamide and alosetron are available for patients with functional diarrhea or IBS-D. We also use antispasmodics for colic, and antidepressants for pain.


We recognize that constipation and bloating may arise in the presence of pelvic floor dysfunction, or normal transit constipation, or slow transit constipation. We recognize that diarrhea may be the result of altered motility and secretion. Beyond that, we know that factors such as increased permeability, mucosal inflammation, and activation of sensory fibers that induce those changes in motility and secretion may have a role and may, in part, explain the pain associated with IBS.


A number of treatments for IBS are under development. While they focus on central pain perception, altered sensation, and altered motility and secretion, novel approaches appear very promising as they will be directed at specific mechanisms that can be identified through tests that are either available or will be in future. For example, in patients who have mucosal immune activation or evidence of inflammation, these treatments may include probiotics, antibiotics, mast-cell stabilizers, or 5-aminosalicylic acid compounds. Similarly, alterations of motility and secretion may be targeted with new classes of medications that include serotonin synthesis inhibitors, chloride channel openers, guanylate cyclase C agonists, and ileal bile acid transporter inhibitors, as well as other agents directed at the specific mechanisms occurring in the GI tract.







Monday, 4 March 2013

NSTE-ACS

LMWH and, to a lesser extent, fondaparinux, have taken over from UFH in the management of ACS, but these agents too, although effective, have important limitations. Perhaps the most important limitations of LMWH and fondaparinux are that they have long half-lives and they are renally cleared. In the emergency room, we are really looking for flexibility in terms of treating the patients.

Fondaparinux, is not really suitable for the cath lab because of the issues related to catheter-related thrombosis.

Bivalirudin is the other available agent, and it also has partly replaced UFH. It has a short half-life, but still it does not have an antidote. It still is partially renally cleared. It is relatively expensive, and it is certainly not used across the spectrum of ACS.

There is another agent that has attracted some attention, pegnivacogin (its earlier name was RB006), and its accompanying complementary aptamer, anivamersen, which is a reversal agent. These are ribonucleic acid (RNA) oligonucleotides. They have a unique 3-dimensional structure. They specifically target factor IX; pegnivacogin can selectively block factor IX and achieve effective anticoagulation. The reversal agent, the complementary aptamer, can promptly and completely reverse the effect of pegnivacogin. This combination is extremely attractive, at least in theory, in ACS and certainly has the potential to help replace heparin.


Wednesday, 27 February 2013

Thalasemia


Thalasemia
The major hemoglobin in adults is hemoglobin A, which is a tetramer consisting of two pairs of globin polypeptide chains: one pair of alpha chains; and one pair of beta chains. In normal subjects, globin chain synthesis is very tightly controlled so that the ratio of production of alpha to non-alpha chains is 1.00 ± 0.05. There are two copies of the alpha globin gene on chromosome 16. A single beta globin gene resides on chromosome 11 adjacent to genes encoding the beta-like globin chains, delta and gamma.
Thalassemia refers to a spectrum of diseases characterized by reduced or absent production of one or more globin chains. Beta thalassemia is due to impaired production of beta globin chains, which leads to a relative excess of alpha globin chains. These excess alpha globin chains are unstable, incapable of forming soluble tetramers on their own, and precipitate within the cell, leading to a variety of clinical manifestations. The degree of alpha globin chain excess determines the severity of subsequent clinical manifestations, which are profound in patients homozygous for impaired beta globin synthesis and much less pronounced in heterozygotes who generally have minimal or mild anemia and no symptoms. 
Alpha thalassemia, in comparison, is due to impaired production of alpha globin chains, which leads to a relative excess of beta globin chains. The toxicity of the excess beta globin chains in alpha thalassemia on the red cell membrane skeleton appears to be less than that of the excess partially oxidized alpha globin chains in beta thalassemia. This probably explains why the clinical manifestations are generally less severe in alpha compared with beta thalassemia of comparable genetic severity (except for homozygous alpha (0) thalassemia, which is incompatible with extrauterine life, leading to hydrops fetalis and/or death shortly after delivery).
Certain clinical terms are used to describe the phenotypic expression of beta thalassemia:
Beta (0) thalassemia — Beta (0) thalassemia refers to mutations of the beta globin locus that result in the absence of production of beta globin. Patients homozygous or doubly heterozygous for beta (0) thalassemic genes cannot make normal beta chains and are therefore unable to make any hemoglobin A.
Beta (+) thalassemia — Beta (+) thalassemia refers to mutations that result in decreased production of beta globin. Patients homozygous for beta (+) thalassemic genes are able to make some hemoglobin A, and are generally less severely affected than those homozygous for beta (0) genes.
Beta thalassemia major — Beta thalassemia major is the term applied to patients who have either no effective production (as in homozygous beta (0) thalassemia) or severely limited production of beta globin. These are the patients originally described by Cooley (Cooley's anemia). Starting during the first year of life, they have profound and life-long transfusion-dependent anemia.
Beta thalassemia minor — Beta thalassemia minor (beta thalassemia trait) is the term applied to heterozygotes who have inherited a single gene leading to reduced beta globin production. Such patients are asymptomatic, may be only mildly anemic, and are usually discovered when a blood count has been obtained for other reasons.
Beta thalassemia intermedia — Beta thalassemia intermedia is the term applied to patients with disease of intermediate severity, such as those who are compound heterozygotes of two thalassemic variants (table 1). These patients have a later clinical onset and a milder degree of anemia, which may or may not require transfusional support.

STAGES OF INCREASED ICP



Stages of intracranial hypertension
Minimal increases in ICP due to compensatory mechanisms is known as stage 1 of intracranial hypertension.
When the lesion volume continues to increase beyond the point of compensation, the ICP has no other resource, but to increase. Any change in volume greater than 100–120 mL would mean a drastic increase in ICP. This is stage 2 of intracranial hypertension.
Characteristics of stage 2 of intracranial hypertension include compromise of neuronal oxygenation and systemic arteriolar vasoconstriction to increase MAP and CPP.
Stage 3 intracranial hypertension is characterised by a sustained increased ICP, with dramatic changes in ICP with small changes in volume.
In stage 3, as the ICP approaches the MAP, it becomes more and more difficult to squeeze blood into the intracranial space. The body’s response to a decrease in CPP is to raise blood pressure and dilate blood vessels in the brain. This results in increased cerebral blood volume, which increases ICP, lowering CPP and perpetuating this vicious cycle.
This results in widespread reduction in cerebral flow and perfusion, eventually leading to ischemia and brain infarction.
Neurologic changes seen in increased ICP are mostly due to hypoxia and hypercapnea and are as follows:
1. Decreased level of consciousness (LOC),
2. Cheyne–Stokes respiration,
3. Hyperventilation,
4. Sluggish dilated pupils and
5. Widened pulse pressure.

Blood Transfusion



Transfusion Technique:
- Maximum time over which blood products can be administered is 4 hrs for 1 unit because of danger of bacterial proliferation & RBC hemolysis;
- If slower infusion rate is required, half of the unit may be infused while other portion remains refrigerated in the blood bank;
- If flow rate is interrupted for >30 minutes, unit must be discarded;
- Blood should be administered through 170 um filters to prevent infusion of macro-aggregates of fibrin and debris as well as leukocytes; 
- Patients should be observed for the first 5-10 min of a transfusion and then examined frequently for signs of fluid overload and other adverse reactions;
- Emergent transfusion:
- In most cases an Rh type and screen takes 10 minutes and is safer than using O negative blood;
- Characteristics of pRBC;
    - approx 300 +/- 25 mL
   
 - hematocrit: 70 +/- 5%;
 - one unit of pRBCs should increase hemoglobin by approximately 1 gm/dl;
 - citrate is used as an anticoagulant in blood products during plasmapheresis;
    
- citrate is converted to bicarb by liver & causes metabolic alkalosis
- induction of a metabolic alkalosis may produce an abrupt increase in the  hemoglobinn oxygen affinity;
- w/ transfusion actual amount of potassium administered is approx between 5.2 to  6.6 mEq per unit of pRBC;
- since the mean age of blood administered to trauma pts is 13.5 days (and not 35 to  49 days - expiration date of blood), the actual amount of potassium administered per  unit may be only 1 to 3 mEq;
- w/ massive transfusion hypokalemia is more frequently encountered than  hyperkalemia;- this may be also due to alkalosis (from citrate)
- DPG:
- w/ blood that is stored in acid citrate dextrose (ACD) solution for upto to three  weeks is based on the survival of at least 70% of cells in recipients circulation;
- during 3 week period, there is decline in  2-3 disphosphoglycerate (DPG) and a  progressive increase in hemoglobin oxygen affinity (left shift of the oxygen   dissociation curve);
- after transfusion DPG levels require 24 hours or longer to return nl;
- Citrate toxicity:
- can be prevented or its effects minimized by the administration of Ca;
- historically 1gm of CaCl has been given for every four units of blood administered until such time as the pt is normothermic, euvolemic, and is known to have reasonably normal hepatic function;
- if Ca gluconate is used, dose must be 4 times greater than w/ CaCl;
- improved approach is to measure the ionized calcium level.
Complications of Blood Transfusion:
- Blood Product Menu:
- pRBCs - Fresh Frozen Plasma - Platlets - Cryoprecipitate - Transfusion Therapy - Coag Pathway
- Acidemia and Hyperkalemia: from massive transfusions;
- massive transfusion: transfusion of pRBC >6-8 units, must also provide platlets;
            - 8 units platlets for ea 10-12 units pRBC's transfused;
            - 2 units of FFP
            - Ca replacement if hypocalcemic (2nd to citrate)
            - references:
                   
- Electrolyte and acid-base disturbances caused by blood transfusions.
- Hyperkalemia after packed red blood cell transfusion in trauma patients.
- Post-Transfusion Alkalosis:
           - the early net result of successful resuscitation is post-transfusion alkalosis in 
            the patient;
           - the sodium citrate is converted to bicarbonate
           - the alkalosis is associated with increased potassium excretion;
- Hypocalcemia:
           - some recommend calcium supplementation for patients receiving greater 
            than 100 ml/min;
           - give 0.2 gm of CaCl in a separate line for each 500 ml given;
           - some believe that most patients will tolerate 1 unit pRBC q 5 min without 
             requiring calcium supplementation;
- Hemolysis:
    - Non hemolytic reaction:     
           - typically, this reaction occurs after a significant portion of the blood has 
            already been transfused;
           - note: hives + hypotension = anaphylaxis
           - management:
                  - by itself, may continue the transfusion (benadryl 50mg PO/IV);
                  - prior to future transfusions, the patient should be pre-medicated 
                   w/ benadryl 50mg PO/IV (not IM);
                  - if this fails to prevent urticarial rxn, washed RBC's should be
                   given;
                  - w/ mild febrile transfusion reactions fever w/o evidence of 
                   hemolysis or more severe symptoms), antipyretics can be used;
    - Acute hemolytic reaction:
           - most severe and potentially dangerous transfusion reactions;
           - acute intravascular hemolysis occurs during or shortly after transfusion of 
            incompatible blood and is usually due to preformed antibodies; 
                  - typically this reaction occurs early w/ as little as 30 cc of 
                   transfused blood;
           - Manifestations:  
                  - fever, chills, back or chest pain, N/V, and evidence of 
                    hemodynamic instability;
           - Required labs:
                  - spin a hematocrit to look for a pink plasma layer indicates 
                    hemolysis;
                  - pink-red (spun) plasma indicates that greater than 20 mg/dl of 
                   free hemoglobin is present;
                  - send off a DIC screen: PT/PTT, fibrinogen, fibrinogen
                   degradation products, serum bilirubin;
                  - culture of the patient and the donor blood is indicated if there is 
                    suspicion of bacterial contamination;
                  - repeat cross match;
                  - Coomb's Test, Free Hb;
                  - CBC, RBC morphology;
                  - send Donor's Blood back to the blood back;
                  - repeat cross match;
           - Management:
                  - try to preserve intravascular volume and protect against acute
                   renal failure;
                         - NS 500 ml IV "wide open"
                  - monitor the urine output closely and maintain a brisk diuresis 
                   (greater than 100 ml/hr);
                  - consider alkalinization of the urine with bicarbonate (1 mEq/kg 
                   IV until urine pH =7.5-9.0)
                         - will facilitate the excretion of free hemoglobin 
           - Reference:
                  - Extracorporeal hemolysis in orthopedic patients. Report of two 
                   cases.
- Transmission of disease:
- Increased infection rate:
- septic reaction: considered when high fever and hypotension accompany a 
 transfusion reaction;

Immunostimulant for treatment of Malignant melanoma ?


Immunostimulant for treatment of Malignant melanoma ?
A) Levamisol
B) BCG
C) Aldesleukin
D) Methotrexate

Ans: ?C (Aldesleukin)

Used as an adjunct in metastatic renal cell carcinoma, recently approved for Tx of metastatic melanoma.

Aldesleukin toxicity:
Treatment associated w/ serious cardiovascular toxicity resulting from capillary leak syndrome
involves loss of vascular tone, leakage of plasma proteins, adn fluid into extravascular space
may result in hypotension, reduced organ perfusion and even death.

A. Levamisole: 
Antiparasitic drug that stimulates maturation/ proliferation of T cells, enhances T- cell mediated immune responses.
Adjunctive treatment together w/ 5-FU and leucovorin after surgical resection in patients w/ dukes stage C colon cancer.
Has been used in treatment of nephrotic syndome.
Adverse effects: neutorpenia, anemia, thrombocytopenia, agranulocytosis, encephalopathy assoc. w/ demyelination.


B. BCG: 
Bacillus-calmette-guerin used as a non specific immunostimulant.
Used for intravesical therapy of bladder cancer.

D. Methotrexate 
It is an antimetabolite and antifolate drug. It is used in treatment of cancer, autoimmune diseases, ectopic pregnancy, and for the induction of medical abortions. It acts by inhibiting the metabolism of folic acid.


Interferons beta 1a, Iinterferon beta 1b:
Approved for use in MS


Interferons gamma B
Used in chronic granulomatous disease, activates phagocytes.

Oprelvekin:
Recombinant form of human IL 11 derived from genetically altered E. coli, stimulates platelet formation.
Used to treat thrombocytopenia.


Filgrastim:
Granulocyte colony stimulating factor- a 175 aminoacid glycoprotein produced by e. coli, stimulates CFU-G to increase neutrophil prodution. It is a recombinant, many valency, polypeptide. Lineage-specific hematopoietic agent, works on one cell line, stimulates peripehral blood stem cells.
Used to stimulate bone marrow recovery during cancer chemotherapy.


Sargramostim:
Derived from yeast, nonlineage specific hematopoetic agent as it stimulates both granulocytic and macrophage progenitor cells and the mature cells. Receptors on these cells to which sargramostim binds
similar to endogenous cytokine GM-CSF differing only in one amino acid.

Promotes myeloid recovery in patients given high dose chemotherapy for:
-Non-hodgkins lymphoma
-Acute lymphoblastic leukemia
-Hodgkins disease patients who are undergoing bone marrow transplantation
-Used to promote myeloid recovery after standard dose chemotherapy
-Used to help myeloid recovery after BMT
-To treat neutropenia associated w/ AIDS.

Dose related effects:
May be difficult to separate effects due to endogenous GM-CSF and exogenous Sargramostim.
High doses assoc. w/ bone pain, flu-like symptoms, fever, diarrhea, N and V, rash.
* contraindicated in patients w/ heart failure, pulmonary edema, and yeast hypersensitivity.
Epoetin- alpha (erythropoetin):

Recombinant human growth factor responsible for stimulating comitted erythroid precursors resulting in erythropoesis.

Recominent erythropoietin therapy in conjunction w/ adequate iron intake is used in the treatment w/ anemia assoc w/ :
-Surgery
-Treatment w/ zidovudine-induced anemia in AIDs patients
-Cancer chemotherapy (myelosuppressive agents, when chemotherapeutic agents are highly nephrotoxic they may cause anemia)
-Prematurity
-Treatment w/ anemia assoc. w/ chronic renal disease including renal failure.

Thrombopoetin:
Myeloid cytokine growth factor is distinct from but analogous to erythropoietin, G-CSF and GM-CSF
cloning and expression of recombinant human thrombopoietin as a fusion protein combining GM-CSF and 

IL 3 has been very important for patients whose boen marrow has been compromised by chemo
selectively stimulates megakaryocytopoiesis.

Recombinant fusion protein-thrombopoetin + GM-CSF + IL 3 is used to treat anemia, neutropenia, and thrombocytopenia assoc. w/ high dose chemo.

Recombinant human thrombopoetin is used in accelerating platelet recovery in patients undergoing hematopoetic stem cell transplantation.

RA TREATMENT IN PREGNANCY


Methotrexate should be avoided in women trying to conceive or who are pregnant since it is a proven teratogen (pregnancy category X). The data on biologics during pregnancy is much less clear. 

The anti-TNF therapies are all pregnancy category B. 
The other commonly used biologics in RA (abatacept, rituximab, tocilizumab) are pregnancy category C. The Food and Drug Administration (FDA) currently warns against using biologics in pregnancy. 

For women, who require therapy during pregnancy, glucocorticoids, hydroxychloroquine, and occasionally azathioprine (after the first trimester) are the preferred therapies for most physicians who have experience prescribing these agents during pregnancy.

Methotrexate is to be avoided, in particular, since it is a proven teratogen (pregnancy category X). It should be stopped for at least 1 menstrual cycle and as much as 6 months prior to attempting to conceive. 

Men with RA on methotrexate should also discontinue methotrexate for 3 months or more prior to conception. 

The data on biologics during pregnancy are much less clear. There have been case series describing various congenital anomalies affecting fetuses of women using these agents, and there have also been anecdotal reports of women experiencing normal pregnancies and good fetal outcomes with exposure to these compounds. 

The anti-TNF therapies are all pregnancy category B (animal reproduction studies have failed to demonstrate a risk to the fetus, and there are no adequate and well-controlled studies in pregnant women; or animal studies have shown an adverse effect, but adequate and well-controlled studies in pregnant women have failed to demonstrate a risk to the fetus in any trimester). 

The other commonly used biologics for RA (abatacept, rituximab, tocilizumab) are pregnancy category C (animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks).